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Abstract 

An analytical expression is derived for the probabil- 
ity density function (p.d.f.) of X-ray structure-factor 
amplitudes of a crystal with an incommensurate one- 
dimensional modulation. The influence of the (3+1)- 
dimensional superspace symmetry is taken into account. 
It is shown that, in first-order approximation, this p.d.f. 
has the same functional form as the p.d.f, for a nonmodu- 
lated crystal, with a suitable modification of the atomic 
form factor. For main reflections and satellite reflections, 
an expression for the average intensity is derived. This 
leads to a definition of normalized structure factors for a 
crystal with an incommensurate one-dimensional modu- 
lation. In the same first-order approximation, the p.d.f. 
for the amplitudes of these normalized structure factors 
is identical to the p.d.f, for a nonmodulated crystal 
and does not distinguish between main reflections and 
satellite reflections. The theoretical p.d.f.s are compared 
to p.d.f.s obtained from X-ray diffraction data of some 
incommensurate one-dimensionally modulated crystals. 

1. Introduction 

An incommensurately modulated crystal can be de- 
scribed as a three-dimensional translationally symmet- 
ric structure (the basic structure), upon which a pe- 
riodic deviation is superimposed. The wavelength of 
the deviation is incommensurate with respect to the 
lattice of the basic structure, thus destroying the three- 
dimensional lattice symmetry. The diffraction pattern of 
an incommensurately modulated crystal consists of main 
reflections at the nodes of the reciprocal lattice of the 
basic structure, accompanied by satellite reflections that 
are usually weaker. The intensity of a main reflection is 
mainly determined by the presence of averaged atoms at 
their average positions in the basic structure, while the 
intensity of a satellite reflection essentially depends on 
the degree of deviation from this basic structure. 
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During the last two decades, there has been increasing 
interest in incommensurately modulated crystals. The 
structures of a few hundred of such compounds have 
been determined from single-crystal X-ray diffraction 
experiments. The standard procedure is first to deter- 
mine the (nonmodulated) average structure by classical 
methods (direct methods and/or Patterson methods) and 
then to determine the modulation by trial and error by 
searching for anomalously large temperature factors in 
the average structure or from the higher-dimensional 
Patterson function (Steurer, 1987). 

Direct methods have been applied to X-ray diffraction 
data in only one instance (Hao, Liu & Fan, 1987). A 
symbolic-addition procedure (Karle & Karle, 1966) and 
a modified Sayre-tangent formula were employed, with 
common structure factors substituted for normalized 
structure factors. 

As a first step towards the application of statistical 
methods to modulated crystals, investigations have been 
carded out into X-ray diffraction intensity distributions 
as functions of (sin 0)/A and into the possibility of 
obtaining an overall modulation amplitude from the ex- 
perimental data of crystals with an incommensurate one- 
dimensional displacive modulation (Lam, Beurskens & 
van Smaalen, 1992). In the present paper, the probability 
density function (p.d.f.) of the structure-factor amplitude 
is derived for crystals with an incommensurate one- 
dimensional displacive modulation and/or an occupancy- 
factor modulation. It is shown that this p.d.f, can be 
used to define normalized structure factors for modulated 
crystals. 

2. The structure factor 

Let the unit cell of the basic structure be spanned by 
vectors a~ (i = 1, 2, 3). The reciprocal basic vectors a T 
are defined by a~ .aj  = 6ij. The position of an atom # 
is given by r ~' = L + r~, where L is a basic-structure 0,L 
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lattice vector and r~ is the relative position of the atom 
in the unit cell. Each atom is further characterized by its 
form factor f~' and temperature tensor B~. 

The atomic modulation functions uU(q u • r0,L) and 
pU(q • r0, L) denote the deviations from the basic-structure 
position and occupancy factor, respectively. They are 
periodic functions with period 1. The modulation wave 
vector q is incommensurate with respect to the reciprocal 
lattice of the basic structure. The position and occupancy 
factor of an atom in the one-dimensionally modulated 
crystal are given by r~ = ru0,L -4- uU(q • r0,L) ~ and p~ = 
pU (q.  r~,L), respectively. 

The modulated crystal is embedded in (3+1)- 
dimensional superspace, giving a four-dimensional 
translationally symmetric supercrystal. The argument 
q .  r~ L of the atomic modulation functions is replaced 
by ~ - q .  r~,r~ + t, where t is a continuous parameter 
along the extra dimension spanned by e4. This vector 
is perpendicular to physical space. The position of an 
'atom' in the supercrystal is given by the set of points 
t e IR at fixed rU having coordinates (x~, x~, x~ x~'), O,L 

tt # , where x i = [r0, L + uU( :~ ) ] . a  i (i = 1,2,3) and x~ = 
:~  + q .  u U ( ~ ) ,  with respect to the basic translation 
vectors bi = a i -  ( q . a i )  e4 (i -- 1,2,3) and b4 = e4 of 
the supercrystal. Thus, each 'atom' in the supercrystal is 
a 'string' along e4 with periodic bends and densifications 
caused by the atomic modulations. Physical space is 
obtained as an intersection of superspace at constant t. 
Different values for t lead to equivalent descriptions of 
physical space (de Wolff, 1974). 

The syrmnetry of the supercrystal is described by a 
(3+1)-dimensional superspace group. A symmetry op- 
erator is denoted ( R e [ v x , v 2 , v 3 , v 4 )  , where R is the 
three-dimensional part of the point-group operator, e = 
+1 and the numbers vi are the components of a four- 
dimensional translation vector with respect to the basic 
vectors bi of the supercrystal. The operators (R[v), with 
V - -  E i 3 = I  V i a i ,  are elements of the three-dimensional 
external space group of the superspace group. It is 
assumed here that the external space group is identical 
to the basic-structure space group, so that there is a one- 
to-one correspondence between symmetry-independent 
'atoms' in the supercrystal and symmetry-independent 
atoms in the basic structure (de Wolff, Janssen & Janner, 
1981; Janner, Janssen & de Wolff, 1983). 

Because the modulation wave vector is incommensu- 
rate, there exists a one-to-one correspondence between 
reciprocal-lattice vectors in (3+l)-dimensional super- 
space and reciprocal-lattice vectors in three-dimensional 
reciprocal space. Diffraction vectors in three-dimensional 
reciprocal space are defined as S = H + m  q, where H is 
a reciprocal-lattice vector of the basic structure and rn is 
the integer satellite index. For a given inconunensurate 
modulation wave vector, this decomposition is unique. 
There are two kinds of reflections: main reflections 
(m = 0) and satellite reflections (m # 0). The order 
of a reflection is given by [m[. 

The structure factor for X-ray scattering (de Wolff, 
1974; Yamamoto, 1982) can be rewritten as 

N / K  K/e(S)  

F(S,m) = Z Ig (s'ak' km)lI'(s'R ) 
I.L=I k=l  

x exp [27ri(S. Rk" r~ 

+ H • v k  + mv~) + iOu(S. Rk,ekm)], (1) 

with the real atomic scattering factor for vibrating atoms 
defined by 

fu(S)  ---- f~'(ISl) exp ( - S .  B~'-S) (2) 

and the atomic modulation factor gu(S ,m)  - 
Ig~'(S, m)l exp [/0u(S, m)] given by 

/o' 9u(S, m ) =  p~(T + q- r~) exp {27ri 

x [S. u~('r + q .  r~) + mT]}dT, (3) 

where the integration extends over one period along e4. 
Because the atomic scattering factor is a real function 
and because g ~ ( - S , - m )  = [9u(S,m)]*, where * de- 
notes the complex conjugate, Friedel's law applies to 
the structure factor. 

Special attention is required for the appearance of the 
average atomic position r~ in (3), the expression for 
the atomic modulation factor gu(S,m).  In agreement 
with common usage (de Wolff, 1974; Yamamoto, 1982), 
the atomic modulation functions p~ (:~) and u u ( :~) are 
defined with respect to r~. Consequently, the definitions 
of these functions depend on r~. In contrast to common 
usage, the scalar product q .  r~, which usually appears 
in the exponential part of the structure-factor expression, 
has been included in the expression for gu(S,m).  If 
this had not been done, a variation of r~ would have 
caused a correlated change of the values of the atomic 
modulation functions (Fig. la), causing the phase of 
9~'(S, m) to vary with r~. However, by including q .  r~' 
in g~'(S, m), a variation of r~ also introduces a shift in 
the arguments of the atomic modulation functions, which 
cancels the effect of the changes in their definitions. As 
a result, the values of the atomic modulation functions 
are independent of r~ (Fig. l b). (See Appendix A.) It 
follows that g~' (S, m) is an atomic property, independent 
of the average position r~' of the atom• Consequently, the 
average atomic positions r~ can be used as independent 
random variables (see § 3). Note that g~'(S,m) is a 
property not of one single atom in the basic-structure unit 
cell but of the collection of all atoms in the modulated 
crystal having average positions related to one another 
by basic-structure lattice translations. 

The set of K symmetry operators obtained from 
the superspace group by factoring out all four- 
dimensional lattice translations generates K different 
syn~netry-equivalent positions. This set includes the 
lattice-centering operations. The symmetry-enhancement 
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factor e(S) is defined, analogously to the case for non- 
modulated crystals (Giacovazzo, 1980), as the number 
of times the condition S.  Ra = S is satisfied for all 
symmetry operators in this set. For a nonsystematically 
absent reflection S, it follows that, because of symmetry, 
each term in the structure-factor expression appears e(S) 
times. Therefore, the second summation in (1) only 
counts those symmetry operators that generate K/e(S) 
different diffraction vectors. The transformation rules for 
the atomic modulation functions were used to perform 
this symmetry-reduction procedure (Yamamoto, 1982). 

The first summation in (1) counts the N / K  symmetry- 
independent atoms in the modulated crystal, with N 
being the total number of atoms in the unit cell of the 
basic structure (none of which are on special positions). 

For a phase-restricted reflection, there exists an oper- 
k0 k0 a to r  (Rk0 ¢k0lVl k°, v2 k°, v 3 , V 4 ), in  t h e  s e c o n d  s u m m a t i o n  

of (1), for which S.  Rk0 = - S .  This operator can be 
factored out of this summation so that the number of 
symmetry operators is further reduced by a factor of 
two and the structure factor becomes 

F ( S , m )  = 2 e ( S ) e x p  [ /qpl(S)]  

N / K  g/[2e(S)]  

x ~ ~ "  [f(S.Rk,~km)lf~'(S.Rk) 
/z=l k=l 

× + H + 

+ 0~(S • Rk, ekm) -- ep, (S)], (4) 

where, because Friedel's law applies, qat(S) is given by 

~1(S) = 7r(H.vk0 + mvk4°). (5) 

b4 b 4 

b I ~ b  1 
(a) (b) 

Fig 1. Dependency of the definition of the atomic modulation function 
on r~. Sections of superspace through bl and b4 are shown. Physical 
space is denoted by the line E3. A single superspace atom #, having 
a displacive modulation only, is displayed at three different average 
positions r~ (denoted • in E3). For each position, only one period 
of the atomic modulation function is shown. (a) In this example, 
the atomic modulation functions are defined by u~(5:~;r~) = 
U ~ s i n ( 2 7 r ~ ) ,  where 5:~ = q . r~ ,  L + t and U~ is a constant 
vector. Note that this choice is independent of the parameter r~. 
These functions are drawn for three different positions r~. The atomic 
displacements in E3, denoted • ~ o, vary with r~. (b)The atomic 
modulation functions are defined by u~ (5:4~; r~) = U ~ sin [27r(5:~ - 
q .  r~)], where : ~  and U ~ are the same as in (a). The form of this 
function depends on r~ but the atomic displacements in E3 are all 
the same (• = o). 

The phase of the structure factor is now restricted to two 
values, ~t:~ 1 (S )  and (/9 1 (S )  +71". Phase-restricted reflections 
have p.d.f.s different from those of non-phase-restricted 
reflections (Wilson, 1949). 

The following abbreviations are used in this paper: 
F -- F ( S , m ) ,  e _-- e(S), fff -- fz (SRk) ,  g~ - 
g~(Sak,~km), 19~ -- Ot~(Sak,ek m) a n d  ~1 --  (/91(8). 
Trivial arguments are omitted in some of the functions 
defined below, to shorten the corresponding equations. 

3. The probability density function 

The probability density function (p.d.f.), PIvl,~, for 
the amplitude IF[ and phase ~ of the structure factor 
measures the chance, PIFI,c(R, qo) dR dqo, of finding IF] 
with a numerical value between R and R + dR and 
(I) with a value between qa and qo + d(p. For crystals 
having three-dimensional lattice periodicity, the p.d.f, is 
obtained for a single diffraction vector by averaging over 
all configurations of symmetry-independent atoms in the 
unit cell, with the assumption that the positions of these 
atoms can be treated as independent random variables. 
The same assumption is made with respect to the average 
positions r~ of the symmetry-independent atoms in the 
basic-structure unit cell of the modulated crystal, but 
with unchanging atomic modulations. 

It is also assumed that the symmetry-independent 
atoms are uniformly distributed throughout the basic- 
structure unit cell. As a consequence, the p.d.f. Pr for 
finding a configuration of symmetry-independent atoms 
must be a constant equal to V -N/K, where V is the 
volume of the basic-structure unit cell (Hauptman & 
Karle, 1952, 1953; Karle & Hauptman, 1953). 

Non-phase-restricted reflections 

The derivation of the p.d.f, for the structure-factor am- 
plitude of non-phase-restricted reflections is performed 
analogously to a procedure given by Castleden (1987) 
for X-ray structure factors of nonmodulated crystals.'[" 
The structure factor F given by (1) is a function of the 
average atomic positions r0 ~, which are assumed to be 
independent random variables. Because F = A + iB, 
the p.d.f. PA,B for (A, B) having the numerical values 
(a, b) is given by 

PA,B(a, b) = (27r) - 2  e x p  [-i(au + bv)] 
O0 O0 

× Q(u, v) du dv, (6) 

where Q(u, v) - (exp [i(Au + Bv)]) is, by definition, 
the characteristic function of PA,B. Because A and B 

f For phase-restricted reflections, the phase of the structure factor is 
not a continuous random variable, as for non-phase-restricted reflections, 
but is a discrete random variable. Therefore, the p.d.f, for phase-restricted 
reflections [(16)] contains only one Fourier integral and not two, as is the 
case for non-phase-restricted reflections [(6) and (8)]. This means that 
the p.d.f, presented by Castleden (1987) is not valid for phase-restricted 
reflections. 
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are functions of the independent random variables r~, 
the characteristic function can also be written as an 
expectation value with respect to the p.d.f. Pr for the 
configurations of symmetry-independent atoms in the 
basic-structure unit cell: 

Q(u, v) = / v  . . . / v e x p  [i(Au + Bv)] 

× P~(r~,.. N/K, ,  1 dr N/K (7) 
• ,  r0 ) a r0 . . .  

where the integrals are over the volume of the basic- 
structure unit cell. 

Because F = IFlexp(iO),  the p.d.f. /~Fl,~, for 
(IFI,O) having the numerical values (R, qa) can be 
derived• By the introduction of polar coordinates a - 
Rcosqo, b = R s i n ~ , u  = p c o s ~ a n d v  = ps in~ ,  
and using PIFI,~(R, 99)dRd~ = PA,B(a,b)dadb, it 
follows from (6) that the p.d.f, for the structure factor 
can be written as 

Plfh¢(R, qo) 

= (2~r)-2R exp[-iRpcos(~-~o)] 

x Q(pcos ~,psin ( )pdpd~.  (8) 

By the same procedure as given by Castleden (1987), 
the exponent in (7) can be evaluated as an N/E-tuple 
product over integers n~,k, of the form 

nx,x=-oo nN/K,K/,=--oo k t t = l  k = l  

( N / K  K/e  

x e x p l i  E E nmkt27r(s" Rk "r~ + H . v k  
I ,  # = 1  k = l  

+ mv~) + 0~ - ~ + ~/2] }, (9) 

with Jn the nth-order Bessel function of the first kind. 
By substitution of (9) for the exponent in (7) and with 

the a priori assumption of uniformly distributed atoms, 
the characteristic function can be evaluated. When per- 
forming the integration with respect to the average 
atomic positions, one should be aware that, for main 
reflections, the components of S are all integers while, 
for satellite reflections, at least one of the components 
of S is not an integer. Then, the expression for the 

#=1 j=l  h(a~,j) 

characteristic function becomes 

Q(pcos ~,psin ~) 

~ ° ° °  

n l , l = - - ~  nN/K,K/~ =-00 

x exp (iTra;,j Jn.,~ (P'Ig~ ~' 

L / ~ = 1  k = l  

where 

and 

N / K  K/e  

x exp i E E n~,k[27r(n, vk + mv~) 
tz=l k=l 

+ 0~ - ~ + ~-/2] }, (10) 

{1 (z=O) 
h(z) = (Trz) -1 sin (7rz) (z ~ 0) 

(11) 

k=l i=l 

(12) 

Here, Si is the ith component of the diffraction vector 
with respect to the reciprocal-lattice vectors a* of the 
basic structure and Rikj is the ijth component of the 
matrix Ilk. 

For each term in the multiple summation of (10), 
the a~,j form a set of 3 N / K  numbers. A term will 
not contribute to the multiple summation if there is 
an a~,j in the set with a nonzero integer value. Note 
that, for main reflections, a term only contributes to the 

c multiple summation if the condition au,j -- 0 is fulfilled 
for all # and j.  [This is in agreement with condition 
(2) given by Castleden (1987).] For satellite reflections, 
there is no such condition because at least one of the 
coordinates of the diffraction vector is not an integer. 
However, terms in the multiple summation with some of 
the a~,j not integers and all others zero decrease rapidly 
in magnitude. 

Following Castleden (1987), the p.d.f. PIFI,~ for the 
structure factor is evaluated. The characteristic function 
(10) is substituted in (8) and the integral with respect 
to ~ is calculated by means of an integral equation for 
Bessel functions. It is noticed that, for each term with 
given integers n~,k in the resulting formula for PIFI,~', 
there exists a corresponding term with all the integers 
reversed in sign, being its complex conjugate. Therefore, 
the imaginary parts of all terms cancel and PIFI,~ is a 
real function. The phase of the structure factor is now 
integrated out so that the p.d.f. PIFI for the structure- 
factor amplitude is obtained as 

oo oo 

Pj~,(R)=R ~ ... Z a~(R) 
n l , l  = - -  ~:~ r~N/K,K/e~--O0 

x h (a , j )  cos 7r 
[. tz=l j=l  \ iz=l j=l  

+ Z n..~p,~(S.v~ + ~ )  + 0~1 . 
k = l  

(13) 
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where 

at(R) = l H Jn,., (Pelg~lf~) 
\ / z = l  k = l  

X Jo(pR)pdp (14) 

is an integral containing multiple products of Bessel 
functions and the condition exists that 

N/K K/e 

E E n t z , k  
p=l k=l 

= 0 ,  (15) 

resulting from the integration with respect to qo and 
further reducing the number of terms contributing to the 
multiple stmunation. 

Phase-restricted reflections 
The p.d.f, for the structure-factor amplitude of a 

phase-restricted reflection is evaluated following a pro- 
cedure indicated by Peschar (1987). From the actual 
structure factor F '  of the phase-restricted reflection, 
given by (4), a new structure factor F = F '  exp (-iqal) 
can be obtained. Because [F[ = [F'I, the p.d.f, for the 
structure-factor amplitude is the same for both structure 
factors. The new structure factor F is a real function 
dependent on the average atomic positions r~, which 
are assumed to be independent random variables. The 
p.d.f. PF for F having the numerical value c is given by 

f PF(c) = (27r) -1 exp(-icw)Q(w)dw, (16) 
c~ 

where Q(w) - (exp(iFw)) is by definition the char- 
acteristic function of PF. Because F can be positive 
as well as negative, the p.d.f. PIFI for IFI having the 
numerical value R is obtained from (16) as 

F PIFI(R) = 7T -1 c o s ( w R ) Q ( w ) d w .  (17) 
oo 

The characteristic function can also be written as the 
expectation value with respect to the p.d.f. Pr of the 
configurations of symmetry-independent atoms in the 
basic-structure unit cell: 

Q(w) = 
oo oo 

E E 
r/,1,1=--OO nN/K,K/(2e)=--O0 

× H h(ad,J ) exp (iTrad,j) 
L #=1 j=l 

x d~,.~(2welgklf£) 
k U=l k=l 

N/KK/(2e) 

× exp i E E n.,k[27r(tt-Vk +rnv~)  
#=1 k=l 

-~-0~ --~1 + 71"/2] } ,  (1O) 

with the function h defined by (11) and the numbers 

d 
c~tz,J -- E ntz,k 

k=l i=l 
(20) 

having the same meanings as the numbers a~,j given 
by (12). 

In order to evaluate the p.d.f, of the structure-factor 
amplitude, the integral in (17) is split into two parts, 
i.e. f_°°oo ...dw --, f o ' "  .dw + f°oo ...dw. After sub- 
stitution of (19) into both integrals, the second integral 
is transformed by replacing all numbers n~,k by --nmk, 
because the summations may be reversed, and changing 
w into - w .  Thus, the second integral becomes the 
complex conjugate of the first integral. The p.d.f. PIFI 
for the structure-factor amplitude then becomes 

oo oo 

PIFI (R) =27r-1 E "'" E Gd(R) 
n l , 1 - - - - - - ~  nN/K,K/(2e)=--CO 

x h(ad,j) cos r a~,,j 
l/z=l j=l \#=1  j=l 

g/(2e) 

+ E n~,k[27r(n-vk + mvk4) + O~ 
k=l 

--qO 1 +71"/2]}),  (21) 

Q(w) = / y . . .  /yeXp(iFw) 

× Pr(r~,...,rN/g)dr~...drg/g, (18) 

where the integrals are over the volume of the basic- 
structure trait cell. 

The characteristic function is evaluated, using a pro- 
cedure similar to the one given above, as 

where 

fo " "  Gd(R) = Jn,,k (2welgk lYE ) 

x cos (wR) dw (22) 

is an integral containing multiple products of Bessel 
functions. 
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4. Approximated probabifity density functions 

Exact evaluation of the integrals (14) and (22) is only 
possible for a few simple cases. For the general case, 
analytical expressions can be derived, but cannot be 
simplified. It is possible, however, to obtain a first- 
order approximation for p.d.f.s (13) and (21) by only 
considering the term in the series expansion with n~,k = 
0 for all # and k. Then, the multiple products in 
the integrals (14) and (22) contain zero-order Bessel 
functions (J0). For large N, the integrands only give 
a significant contribution to the integrals if the argument 
of J0 is small. Therefore, the approximation Jo(z) "~ 
exp ( -z2 /4 )  can be used. 

In addition, let $,~ be defined as 

N 

S,~ - ~ lg" f ' l  '~, (23) 
/z=l 

Note that, for both (26) and (28), the condition ,52 > 0 
must be fulfilled. 

P.d.f.s (26) and (28) show a close resemblance to 
p.d.f.s for nonmodulated crystals (Wilson, 1949, 1950). 
In fact, they can be obtained from the latter by replace- 
ment of the atomic form factors f~' with Ig~lf u, where 
I gUl is the amplitude of the atomic modulation factor 
[(3)]. The effect of the superspace symmetry is taken into 
account by the symmetry-enhancement factor e, which 
is defined similarly as for nonmodulated crystals. 

In the limit of diminishing modulation (u u --~ 0, 
p~' --, 1), p.d.f.s (26) and (28) reduce to those for 
nonmodulated crystals. For main reflections (m = 0), 
Ig"l --' 1, $2 ~ EN=I(f~') 2 and PIPI(R) becomes 
identical to the p.d.f, for a nonmodulated crystal. For 
satellite reflections (m ~ 0), Ig~l --+ 0, s= --, 0 and 
PIFI(R) ~ 0 for R ~ O, i.e. the satellite reflections 
disappear. 

where the summation extends over all atoms in the basic- 
structure unit cell. If the symmetry operators are factored 
out as in § 2 and the transformation rules for atomic 
modulation functions (Yamamoto, 1982) are used, it can 
be shown that (23) is identical to 

N/K K/e 

1~=1 k=l 

(non-phase-restricted reflections) 
g / g  g/(2e) (24) 

F_, Ig Zl 
#=1 k=l 

(phase-restricted reflections). 

In first-order approximation, the p.d.f. PIF[ for a non- 
phase-restricted reflection (13) is written as 

PIFI(R) = R pexp (-¼p2eS2)Jo(pR)dp, (25) 

with 82 defined by (23). This integral can be evaluated 
[equation (6.631-4) of Gradshteyn & Ryzhik (1980)] to 
obtain: 

PIFI(R) = (2R/eS2)exp ( -R2/eS2) .  (26) 

The p.d.f. PIF I for a phase-restricted reflection (21) 
can be written in first-order approximation as 

= exp cos( R)d , 

(27) 

with ,92 defined by (23). Evaluation of this integral 
[equation (3.869-4) of Gradshteyn & Ryzhik (1980)1 
gives 

PIFI(R) = (2/TrES~)l/2exp (-R2/2eS2).  (28) 

5. Normalized structure factors 

For nonmodulated crystals, normalized structure factors 
are defined by E - F(IFI2) -1/2, where (in first- 
order approximation) (IFI2> = e EN=I(I")  2, with <> 
denoting an average over all configurations of symmetry- 
independent atoms in the unit cell. The same definition 
can be used for modulated crystals but with <IFI 2> - 
f o  R2PIFI(R) dR = eS2, where PIFI is given by either 
(26) or (28). Thus, the following expression is obtained 
for normalized structure factors of modulated crystals: 

E = F (e&)  -1/~. (29) 

From (29), the p.d.f.s PIE[ for a normalized structure- 
factor amplitude I EI of a modulated crystal having a 
numerical value X can be derived. Introducing the trans- 
formation X = R (e S2) -1/2 and using PIEi(X) d X  = 
PIFI(R) dR, one can write the p.d.f. PIEI for non-phase- 
restricted reflections as 

PIEI(X) = 2X exp ( -XZ) ,  (30) 

while for phase-restricted reflections it becomes 

PIEI(X) = (2/7r)1/2 exp ( - x 2 / 2 ) .  (31) 

Note that (30) and (31) are independent of specific 
properties of the modulated crystal, as for nonmodulated 
crystals. Also note that these p.d.f.s are independent of 
the diffraction vector S, in contrast to p.d.f.s derived in 
previous sections. 

With the present definition of normalized structure 
factors [(29)], neither the acentric p.d.f. [(30)] nor the 
centric p.d.f. [(31)1 distinguishes between main reflec- 
tions and satellite reflections. These p.d.f.s are identical 
to p.d.f.s for normalized structure-factor amplitudes of 
nonmodulated crystals, also in first-order approxima- 
tion (Giacovazzo, 1980). The difference between the 
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approach for nonmodulated crystals and the present 
approach for modulated crystals is in the definition 
and evaluation of ,92 [(23)]. It follows that, with the 
present definition of normalized structure factors [(29)], 
the structure-factor statistics of modulated crystals are 
the same for both main and satellite reflections and are, 
in addition, identical to the structure-factor statistics of 
nonmodulated crystals. 

As with nonmodulated crystals, normalized structure 
factors (29) can be associated with structure factors due 
to point atoms in a modulated crystal. Consequently, 
averaging over reciprocal space instead of physical space 
provides an equivalent method of obtaining p.d.f.s and 
expectation values. In particular, for any large set of 
reflections (general, zone, row), <] El 2) = 1, regardless of 
whether or not this set contains main reflections, satellite 
reflections or main and satellite reflections. This can 
be derived by a straightforward calculation from (30) 
and (31). 

For nonmodulated crystals, treated in the same ap- 
proximation, (I F I 2) can be estimated from experimental 
X-ray intensities with no prior knowledge of the crys- 
tal structure other than the unit-cell contents (Wilson, 
1942). In the present case, exact evaluation of <IFI2>, 
and likewise of $2 [(23)], also requires knowledge of 
the complete atomic modulation functions. To obtain 
an a priori estimate of the normalized structure-factor 
amplitudes, further approximations are necessary. 

For crystals with an incommensurate one-dimensional 
displacive modulation, (IF[ 2> can be estimated if an 
overall modulation amplitude is introduced that simu- 
lates the effect of the atomic displacements. Experimen- 
tal I EI values estimated from measured X-ray intensities 
(I) on a relative scale (corrected for Lorentz and po- 
larization effects and absorption) are then defined by 
[equations (18) and (19) of Lam, Beurskens & van 
Smaalen (1992)] 

IEDI = I{cG( ; Iml) 
}1 

Z [ f ~ ( 8 ) ]  2 , (32)  

/.t=l 

where f~ is the form factor for atoms at rest and 
s = (sin 0)/A. The function G(s; Iml), 

f0 
1 

c(s; Iml)= K - 2  exp  ( - 2 / 3 s  2) J}ml(47rsUx)dx,  

(33) 
only depends on the scale factor K, the overall isotropic 
temperature parameter /3 and the overall modulation 
amplitude U. These parameters can be obtained by 
fitting? this function against (seminormalized) average 
intensities versus s 2. 

t The fitting procedure (Lam, Beurskens & van Smaalen, 1992) was 
modified to perform a logarithmic fit. This automatically assigns a larger 
weight to weak intensity data and generally results in a better fit. 

6. Numerical evaluation 

The validity of the approximate expressions (30) and 
(31) has been tested by calculating IEbl and PIEbl from 
X-ray structure-factor data for several structures with an 
incommensurate one-dimensional displacive modulation. 
As for nonmodulated crystals, the assumptions underly- 
ing the approximations require a structure with many 
symmetry-independent equal atoms that are randomly 
distributed throughout the basic-structure unit cell. Here, 
also, a random distribution of the components of the 
atomic modulation functions is required. A first test for 
the theory was provided by fictitious structures devised 
to fulfil these requirements as closely as possible. In 
addition, the effect of special atomic modulations on the 
p.d.f.s is examined. In the last part of this section, p.d.f.s 
for some real modulated crystals are shown. 

Normalized structure-factor amplitudes I Ebl were es- 
timated from (32) using the previously defined fitting 
procedure to determine K , / 3  and U (Lam, Beurskens 
& van Smaalen, 1992). The p.d.f. PIEbl for the nor- 
malized structure-factor amplitudes was then calculated 
by counting the number of reflections within suitable 
I Ebl intervals and then multiplying this number by an 
appropriate normalization constant. 

All the model structures created have superspace 
group P1 (ql ,  q2, q3) 1 (models A l-A4) or superspace 
group Pi(q l ,  q2, q3)i (models C1-C4). Each model 
structure has a realistic density (,-18 ,/k 3 atom -1) and 
realistic atomic modulations. The basic-structure unit 
cell contains 50 carbon atoms, with the symmetry- 
independent atoms randomly positioned and not oc- 
cupying any special positions. For each symmetry- 
independent atom, the modulation function is given by 
uU(5:~) = U~ cos (27r:~) + Uc u sin (27r5:~), where the 
directions of the vectors U~ u and U~ were chosen at 
random. The atomic modulation amplitude Uu, defined 
by Uu 2 = (U~) 2 + (U~U) 2 with Up and U ff representing 
the lengths of the vectors U~ u and U~, respectively, 
fluctuates around the overall modulation amplitude U. 
The latter is given by U 2 = a -1 ~--~u~a Z2U2u, where 

N 2 O" = ~-"~#=1 Z~ and Z u is the atomic number. To 
examine the effect of nonrandom atomic modulations, 
additional model structures were devised, having the 
same characteristics as those mentioned above but 
with a different type of atomic modulation. For 
one type of atomic modulation, the directions of 
the vectors U~ u and U~ u were chosen arbitrarily for 
each symmetry-independent atom but all atoms have 
identical modulation amplitudes. Another type of atomic 
modulation is the rigid-body displacement. For each 
symmetry-independent atom, the modulation function 
is given by uU(Y~ ') = (Uu/a2)s in(27r t )a2 ,  where 
t = ~2~ - q .  r u i.e. the modulation is a sinusoidal O,L' 
translation along the a2 axis of the basic-structure unit 
cell, with all atoms having the same starting phase 
and modulation amplitudes. Characteristics of the model 
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Table 1. Model structure characteristics 

Compounds: Ai, noncentrosymmetrie supe~pace group PI (ql, q2, q3) 1; 
Ci, centrosymmetric superspace group Pl(ql,q2,q3)l (see text for 
explanation). 

Model U u (A) 
structure U (A) min./max. 

AI 0.04 0.01210.055 
A2 0.2 0.057/0.276 
A3 0.2 0.2/0.2 
A4 0.2 0.2/0.2 
CI 0.04 0.019/0.051 
C2 0.2 0.09710.255 
C3 0.2 0.2/0.2 
C4 0.2 0.2/0.2 

Atomic modulation functions 

Random amplitudes and directions 
Random amplitudes and directions 
Identical amplitudes and random directions 
Rigid-body displacement 
Random amplitudes and directions 
Random amplitudes and directions 
Identical amplitudes and random directions 
Rigid-body displacement 

Table 2. Values of K, B, U and (IEbl 2) 
Parameters K, B and U were obtained from a fitting procedure applied to 
main reflections and lm]= I satellites. Values of (lEb 12) were calculated 
from the normalized structure-factor amplitudes IEbl [equation (32)] for 
(1) main reflections, (H) Iml = 1 satellites and (HI) main reflections plus 
Iml = 1 satellites. These values must be compared to the input values 
K = i, B = 2 and U as given in Table I, while ([Ebl 2) = I. 

Model ([Eb[2) 
structure K B (/~2) U (A) (I) (H) (HI) 

A 1 1.00 1.99 0.040 0.991 1.003 0.994 
A2 1.01 1.98 0.198 0.985 1.005 0.993 
A3 1.04 1.91 0.214 0.973 1.011 0.994 
A4 1.01 1.98 0.200 0.986 1.004 0.993 
C1 0.99 2.00 0.040 0.994 1.002 0.995 
C2 1.01 1.98 0.203 0.987 1.004 0.994 
C3 1.02 1.94 0.212 0.987 1.008 0.994 
C4 1.01 1.97 0.199 0.989 1.012 1.000 

structures together with details of all atomic modulations 
are given in Table 1. For all model structures, structure 
factors were calculated for main reflections and first- 
order satellites, up to s = 1 ]k -1, using K - 1 and 
B = 2 A  2. 

The values of the parameters K,  B and U obtained 
from the fitting procedure are given in Table 2. For 
both small and medium-size atomic modulations, they 
are in excellent agreement with the values input to 
the structure-factor calculations. The largest deviations 
occur for the U values of structures A3 and C3. Also 
shown in Table 2 are the values of (IEb[ 2) calcu- 
lated from the normalized structure-factor amplitudes 
]Eb[. For both main reflections and first-order satellites, 
these values are all close to 1, as they should be with 
the present definition of normalized structure factors 
[(29)]. Note that nonmndom atomic modulations do 
not apparently cause serious deviations from the ideal 
values. Pigs. 2(a) and (b) show the results of the fitting 
procedure for the noncentrosymmetric structure A2 and 
the centrosymmetric structure C2, respectively. One can 
see that the intensity distributions are accurately repro- 
duced. For the structures A3 and C3, the quality of the 
fitted intensity distributions for the main reflections (not 
shown here) is somewhat less. The intensity distributions 
given in Pigs. 2(a) and (b) correspond well with the 
intensity distributions of all other noncentrosymmetric 
and centrosymmetric model structures, respectively. 

P.d.f.s PIEbl for structures A2 and C2 are given 
in Fig. 3. The p.d.f.s for main reflections and first- 
order satellites are nearly identical for each structure. 
Furthermore, the p.d.f.s for structures A2 and C2 are 
in excellent agreement with the theoretical p.d.f.s for 
noncenstrosymmetric [(30)] and centrosymmetric [(31)] 
structures, respectively. A similar good agreement was 
observed for the p.d.f.s of the structures A1, A3, C1 
and C3 (not shown here). This shows that, with the 
present definition of normalized structure factors [(29)], 
the structure-factor statistics do not distinguish between 
main and satellite reflections and are identical to the 
structure-factor statistics for nonmodulated crystals. 

For the structures A4 and C4 (rigid-body modula- 
tions), the resulting p.d.f.s PIE~I show entirely different 
behavior. For the noncentrosymmetric structure A4, the 
p.d.f, for main reflections is between acentric and centric 
(Fig. 4a), while the p.d.f, for first-order satellites follows 
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0.0 0.2 0.4 0.6 0.8 1.0 
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Fig. 2. Natural logarithm of the (seminormalized) average intensity 
G(s; [ml) as a function of s 2, for main reflections (circles) and 
Iml = 1 satellite reflections (triangles). The solid lines represent 
the curves obtained from the fitting procedure: (a) for structure A2; 
(b) for structure C2. 
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the theoretical p.d.f, for centrosymmmetric structures 
(Fig. 4b). For the centrosymmetric structure C4, the 
p.d.f.s show severe deviations from the theoretical p.d.f., 
especially for low and intermediate [Ebl values, indicat- 
ing an excess of weak reflections. In fact, the p.d.f.s 
Plgbl shown in Figs. 4(c) and (d) show remarkable 
resemblances to hypercentric distributions as known for 
nonmodulated crystals (Shmueli, Weiss & Kiefer, 1985). 
Note that, for structures A4 and C4, the p.d.f.s tend to 
be more centric than expected. This effect is larger for 
first-order satellites than for main reflections, presumably 
because the intensities of satellite reflections are much 
more sensitive to the modulation than the intensities of 
main reflections. 

In summary, restriction of the atomic displacements 
to having the same modulation amplitude for all atoms 
does not have much influence on the p.d.f.s. Also, 
restriction of the directions of the atomic displacement 

vectors introduces pseudosymmetry, causing the p.d.f.s 
to become more centric than they are expected to be. 
This effect is more severe for satellites than for main 
reflections. An acentric p.d.f, can even be changed 
into a centric p.d.f. Although a rigorous mathematical 
treatment is not yet available, it seems that a special type 
of displacive modulation can introduce effects similar to 
hypersymmetry effects for nonmodulated crystals. 

For three real compounds with displacively modulated 
structures, intensity distributions and p.d.f.s were calcu- 
lated. For Na2CO3 (van Aalst, den Hollander, Peterse 
& de Wolff, 1976) and for K0.3MoO3 (Schutte, 1990), 
both the set of IFI values derived from experiment 
and the more complete set of IFI values derived from 
the published structure models were used. For C12D10 
(deuterated biphenyl; Baudour & Sanquer, 1983), only 
the calculated [FI values were available, as the struc- 
ture was determined by neutron diffraction. For each 
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Fig. 3. P.d.f.s for model structures with random atomic modulations. The solid line represents the theoretical p.d.f, for normalized structure- 
factor amplitudes of centrosymmetric structures [(31)]. The dashed line represents the p.d.f, for normalized structure-factor amplitudes of 
noncentrosymmetric structures [(30)]. Circles represent the p.d.f. PIEbl derived from the IEbl values [(32)], calculated for the various 
structures: (a)for main reflections of structure A2; (b)for Iml = 1 satellites of structure A2; (c)for main reflections of structure C2; 
(d) for Iml = 1 satellites of structure C2. 
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compound, the published structural model was used 
to calculate the overall modulation amplitude U and, 
similarly, the overall isotropic temperature parameter B 
(Hamilton, 1959). For both main reflections and first- 
order satellites, structure factors were calculated with 
scale factor K = I and up to s = I /~ -1 .  

Results obtained from the fitting procedure together 
with the values of (IEbl2) are summarized in Table 3. 
Apparently, all scale factors for the calculated structure 
factors are overestimated. The scale factors for the 
observed X-ray intensities were not reported in the liter- 
ature and cannot be compared to the scale factors input 
to the structure-factor calculations. The fitted values for 
B and U are in reasonable agreement with a priori 
calculated values. Note that the values of B and U 
obtained from the fitting procedure applied to calculated 
structure factors compare very well with those obtained 
from observed X-ray intensities, which shows that the 
deviations between calculated and fitted parameters are 
intrinsic to the structures and not a result of experimental 

errors. The values of <1Eb 12> are close to 1 for calculated 
structure factors as well as observed X-ray intensities. 

From Fig. 5, it can be seen that the experimental 
intensity distributions are reasonably well reproduced 
for all three modulated crystals. The p.d.f.s for Na2CO3 
(Figs. 6a and b) and K0.3MoO3 (Figs. 6c and d) ob- 
tained from calculated structure-factor amplitudes are 
essentially centric, as expected from their superspace 
groups, but show hypercentric behavior. This is likely to 
be caused by atoms on special positions, the nonrandom 
arrangement of atoms in the basic-structure unit cells 
and the nonrandom character of the atomic modulation; 
for NazCO3, the atomic displacements are parallel to 
the a2 axis for most of the atoms. The same deviations 
were also observed for p.d.f.s of main reflections, using 
I EI values obtained through a conventional Wilson plot 
(Wilson, 1942). This indicates that these anomalies are 
intrinsic to the structure. The behavior of the p.d.f.s 
obtained from calculated structure factors is smoother 
than that of those obtained from the experimental X-ray 
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Fig. 4. P.d.f.s for structures with rigid-body modulations (see Fig. 3 for definitions): (a) for main reflections of  structure A4; (b) for Iml = 1 
satellites of  structure A4; (c) for main reflections of  structure C4; (d) for Iml = 1 satellites of  structure C4. 
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Table 3. Values of K, B, U and (IEbl 2) 
Parameters K ,  B and U were obtained from a fitting procedure applied to 
main reflections and Iml = 1 satellites. Values of  (IEb 19) were calculated 
from the normalized structure-factor amplitudes IEbl [equation (32)] for 
(I) main reflections, (II) Iml = 1 satellites and (III) main reflections 
pins Iml = 1 satellites. For each compound, line pp contains B and U 
calculated from published parameters and the expected values of (IEb[2); 
for calculated data, K = 1. For experimental data, K is unknown. Lines 
fc andfo show the results obtained from calculated data and experimental 
X-ray data, respectively. The values of K for experimental data cannot 
be compared to those for calculated data. 

Model (IEbl2) 
structure K B (A 2) U (A) (I) (II) (III) 

pp 1 1.42 0.386 1 1 1 
Na2CO3 fc 1.07 1.10 0.422 1.007 1.007 1.007 

fo 0.60 1.16 0.461 0.997 1.009 1.005 
pp 1 0.22 0.033 1 1 1 

K0.3MoO3 fc 1.04 0.15 0.035 0.995 1.001 0.999 
fo 3.18 0.17 0.035 0.993 0.994 0.993 
pp 1 0.99 0.112 1 1 1 

Cl2Dl0 fc 1.05 0.70 0.110 0.998 1.008 1.005 

_= 

1 ~  Na2COz 
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" -  V v 

I I i i 
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data. This is a result of the large number of reflections 
with intensities less than or equal to a few standard 
deviations. Note that the p.d.f.s have the same shape 
for main reflections and first-order satellites. 

The p.d.f.s for C12D10 obtained from calculated struc- 
ture factors show behavior that is more centric than 
acentric (Figs. 6e and f ) ,  although the superspace group 
is noncentrosymmetric. This is a typical example of a 
modulated crystal with pseudosymmetry. In the basic 
structure (space group P21[a), there is an inversion center 
at the center of the molecule. This inversion center 
is destroyed by the displacive modulation (specifically, 
by the torsion around the long molecular axis). This 
means that the superspace group is noncentrosymmetric 
(extemal space group Pa), but half of the symmetry- 
independent atoms have average positions r~ related to 
those of the other symmetry-independent atoms by an 
inversion center. This causes the p.d.f.s to deviate from 
the theoretical p.d.f. [(30)]. 

7. Concluding remarks 

A definition has been presented for normalized structure 
factors in X-ray diffraction for main reflections and satel- 
lite reflections of incommensurate one-dimensionally 
modulated crystals. For displacively modulated crystals, 
the normalized structure-factor amplitudes can be es- 
timated from experimental X-ray intensity data using 
the previously defined fit of (seminormalized) average 
intensity versus (sin 2 0)/A z (Lam, Beurskens & van 
Smaalen, 1992). 

For both phase-restricted and non-phase-restricted re- 
flections, theoretical expressions have been derived for 
centric and acentric p.d.f.s, respectively, of normalized 
structure-factor amplitudes. These p.d.f.s make no dis- 
tinction between main reflections and satellite reflections 
and, in addition, are identical to p.d.f.s for normalized 
structure-factor amplitudes of nonmodulated crystals. 
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Fig. 5. Natural logarithm of the (seminormalized) average intensity 
G(8, [ml) as a function of  s 2 (see Fig. 2 for definitions): (a) Na2CO3; 
(b) Ko.3MoO3; (c) deuterated biphenyl. 
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The theoretical p.d.f.s are in excellent agreement 
with p.d.f.s obtained from normalized structure-factor 
amplitudes of idealized model structures having many 
equal atoms randomly distributed throughout the basic- 
structure unit cell, none of them occupying special 
positions, with random atomic displacements. Model 
structures with special displacive modulations cause the 
p.d.f.s derived from X-ray intensities to deviate severely 
from the theoretical p.d.f.s. This is especially true for 
rigid-body displacements, which cause the experimental 
p.d.f.s to be more centric than the theoretical p.d.f.s and 
which can even change an acentric p.d.f, into a centric 
one. 

For real modulated crystals, there is reasonable agree- 
ment between practical p.d.f.s and theoretical p.d.f.s, 
although various effects that also exist for nonmodulated 
crystals (Srinivasan & Parthasarathy, 1976) cause devia- 
tion from the theoretical p.d.f.s; for example, nonrandom 
atomic distribution and atoms on special positions. Devi- 
ations are also caused by special atomic modulations and 
by the destruction of symmetry elements by modulation, 
leading to pseudosymmetry. 

The results obtained from the idealized model struc- 
tures show the present definition of normalized structure 
factors to provide correct structure-factor statistics for 
incommensurately modulated crystals. Additional tests 
are in progress, investigating the reliability of the triplet 
phase relation and the tangent formula, using only large 
normalized structure-factor amplitudes. It is expected 
that, eventually, statistics of this kind will be used by 
direct-method procedures applied to incommensurately 
modulated crystals. 
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APPENDIX A 

The contribution of atom #, having electron density Pu, 
in basic-structure unit cell L, to the electron density of 
the modulated crystal is 

pU[q. (L + gU)]pu { Ir- r u - uU[q. (L + gU)] I } 0,L 
(34) 

The atomic modulation functions depend on the choice 
of the phase-reference point gU. This can be chosen 
arbitrarily for each atom (Petfi6ek, Coppens & Becker, 

1985). Therefore, the contribution (34) can also be 
written as 

p'U[q. (L + g'U)]pu{lr - r u _ O,L u " [ q .  (L + g'U)] I}, 
(35) 

with the atomic modulations described by functions p,U 
and u 'u, defined with respect to another phase-reference 
point g,U. 

Because (34) and (35) must describe the same electron 
density, they must be equal, which leads to 

pU[q. (L + gU)] = p,U[q. (L + g,U)], (36) 
uU[q • (L + gU)] = uq,[q. (L + g,U)]. (37) 

Because the phase-reference points gU and g'U are 
independent of one another, the left- and right-hand 
sides of (36) and, similarly, of (37) must be independent 
of these phase-reference points. Therefore, although the 
atomic modulation functions pU and u u, as well as their 
argument q .  (L+gU), depend on the choice of the phase- 
reference point g~', the values of the atomic modulations 
are independent of this choice. 
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